Precalculus (6th Edition) Blitzer

Published by Pearson
ISBN 10: 0-13446-914-3
ISBN 13: 978-0-13446-914-0

Chapter 3 - Review Exercises - Page 513: 79

Answer

The required value is $ x=4$

Work Step by Step

Consider the given equation, ${{\log }_{4}}\left( 2x+1 \right)={{\log }_{4}}\left( x-3 \right)+{{\log }_{4}}\left( x+5 \right)$ Apply the product rule of logarithms $\begin{align} & {{\log }_{4}}\left( 2x+1 \right)={{\log }_{4}}\left( x-3 \right)+{{\log }_{4}}\left( x+5 \right) \\ & {{\log }_{4}}\left( 2x+1 \right)={{\log }_{4}}\left( x-3 \right)\left( x+5 \right) \\ \end{align}$ Comparing both sides, we get, $\begin{align} & \left( 2x+1 \right)=\left( x-3 \right)\left( x+5 \right) \\ & 2x+1={{x}^{2}}+5x-3x-15 \\ \end{align}$ Now, add to both sides $-2x-1$, $\begin{align} & 2x+1-2x-1={{x}^{2}}+5x-3x-15-2x-1 \\ & {{x}^{2}}-16=0 \\ & \left( x+4 \right)\left( x-4 \right)=0 \end{align}$ The roots of the above equation are $ x=4,-4$ Here $ x=-4$ is not the solution of the given expression because $\begin{align} & {{\log }_{4}}\left( 2\cdot \left( -4 \right)+1 \right)={{\log }_{4}}\left( -4-3 \right)+{{\log }_{4}}\left( -4+5 \right) \\ & {{\log }_{4}}\left( -7 \right)={{\log }_{4}}\left( -7 \right)+{{\log }_{4}}\left( 1 \right) \\ \end{align}$ So, by definition of ${{\log }_{a}}b $, $ b>0$ but $-7$ is not greater than zero Hence $ x=-4$ does not satisfy the equation ${{\log }_{4}}\left( 2x+1 \right)={{\log }_{4}}\left( x-3 \right)+{{\log }_{4}}\left( x+5 \right)$ Thus $ x=4$ is the only solution of the given expression.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.