Precalculus (6th Edition) Blitzer

Published by Pearson
ISBN 10: 0-13446-914-3
ISBN 13: 978-0-13446-914-0

Chapter 3 - Review Exercises - Page 513: 48

Answer

a) The simplified value is $76$. b) The simplified average score is $67,\text{ 63, 61, 59, and 56}$. c) Shown below

Work Step by Step

(a) For the first exam, the value of t is 0: $\begin{align} & f\left( 0 \right)=76-18\log \left( 0+1 \right) \\ & =76-18\log \left( 1 \right) \\ & =76-18\left( 0 \right) \\ & =76 \end{align}$ Thus, the average score for the first exam is 76. (b) We have the average score after the time period of 2 months: $\begin{align} & f\left( 2 \right)=76-18\log \left( 2+1 \right) \\ & =76-18\log \left( 3 \right) \\ & =76-18\left( 0.4771 \right) \\ & =67.4118 \end{align}$ Take the approximate value: $ f\left( 2 \right)\approx 67$ And the average score after the time period of 4 months is: $\begin{align} & f\left( 4 \right)=76-18\log \left( 4+1 \right) \\ & =76-18\log \left( 5 \right) \\ & =76-18\left( 0.6990 \right) \\ & =63.4185 \end{align}$ Take the approximate value: $ f\left( 4 \right)\approx 63$ And the average score after the time period of 6 months is: $\begin{align} & f\left( 6 \right)=76-18\log \left( 6+1 \right) \\ & =76-18\log \left( 7 \right) \\ & =76-18\left( 0.8451 \right) \\ & =60.7882 \end{align}$ Take the approximate value: $ f\left( 6 \right)\approx 61$ The average score after the time period of 8 months is: $\begin{align} & f\left( 8 \right)=76-18\log \left( 8+1 \right) \\ & =76-18\log \left( 9 \right) \\ & =76-18\left( 0.9542 \right) \\ & =58.8236 \end{align}$ Take the approximate value: $ f\left( 8 \right)\approx 59$ The average score after the time period of 1 year or 12 months is: $\begin{align} & f\left( 12 \right)=76-18\log \left( 12+1 \right) \\ & =76-18\log \left( 13 \right) \\ & =76-18\left( 1.1139 \right) \\ & =55.9490 \end{align}$ Take the approximate value: $ f\left( 12 \right)\approx 56$ Thus, the average scores after 2 months, 4 months, 6 months, 8 months, and 1 year are $67,\text{ 63, 61, 59, and 56}$ respectively. (c) Draw the graph, formulate the table from values of t and f obtained in part(a) and part(b). Thus, as the value of t increases, the value of $76-18\log \left( t+1 \right)$ decreases. We see that with an increase in time t, the retention of course content decreases for students.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.