Precalculus (6th Edition) Blitzer

Published by Pearson
ISBN 10: 0-13446-914-3
ISBN 13: 978-0-13446-914-0

Chapter 3 - Review Exercises - Page 513: 77

Answer

The value of the given expression has no solution.

Work Step by Step

Consider the given equation, ${{\log }_{3}}\left( x-1 \right)-{{\log }_{3}}\left( x+2 \right)=2$ Apply the quotient rule of logarithms: $\begin{align} & {{\log }_{3}}\left( x-1 \right)-{{\log }_{3}}\left( x+2 \right)=2 \\ & {{\log }_{3}}\frac{\left( x-1 \right)}{\left( x+2 \right)}=2 \end{align}$ The provided equation can be written as $\begin{align} & \frac{\left( x-1 \right)}{\left( x+2 \right)}={{3}^{2}} \\ & \frac{\left( x-1 \right)}{\left( x+2 \right)}=9 \\ & \left( x-1 \right)=9\left( x+2 \right) \\ \end{align}$ $ x-1=9x+18$ Now, add to both sides $-x-18$: $\begin{align} & x-1-x-18=9x+18-x-18 \\ & 8x=-19 \\ & x=\frac{-19}{8} \\ \end{align}$ Here $ x=\frac{-19}{8}$ is not the solution of the given expression because $\begin{align} & {{\log }_{3}}\left( x-1 \right)-{{\log }_{3}}\left( x+2 \right)=2 \\ & {{\log }_{3}}\left( \frac{-19}{8}-1 \right)-{{\log }_{3}}\left( \frac{-19}{8}+2 \right)=2 \\ & {{\log }_{3}}\left( \frac{-19}{8}-1 \right)-{{\log }_{3}}\left( \frac{-19}{8}+2 \right)=2 \\ & {{\log }_{3}}\left( -3.375 \right)-{{\log }_{3}}\left( -0.375 \right)=2 \end{align}$ By definition of ${{\log }_{a}}b $, $ b>0$ but $-3.375$ and $-0.375$ is not greater than zero. Thus, $ x=\frac{-19}{8}$ does not satisfy the equation ${{\log }_{3}}\left( x-1 \right)-{{\log }_{3}}\left( x+2 \right)=2$ Therefore, there is no solution of the given expression.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.