Answer
$\ln e^{5}=5$
Work Step by Step
$\log_{b}x=y $ is equivalent to $ b^{y}=x.\qquad (*)$
Consequently,$\qquad \log_{b}b^{x}=x.\qquad (**)$
---
The natural logarithm is logarithm with base $ e,\quad(\ln x=\log_{e}x).$
So, the base here is $ b=e,\ b^{x}$=$ e^{5}$, and due to (**),
$\ln e^{5}=\log_{e}e^{5}=5$