Answer
$(f o g)x= (x+2)^2 $ and $(g o f) x=x^2+2$
Work Step by Step
We are given that $ f(x)=x^2$ and $ g(x)=x+2$
Our aim is to find $(f o g)x $ and $(g o f) x $
$(f o g)x= f(x+2)=(x+2)^2 $
and $(g o f) x= g (x^2)=x^2+2$
Thus, our result are: $(f o g)x= (x+2)^2 $ and $(g o f) x=x^2+2$