Precalculus (6th Edition) Blitzer

Published by Pearson
ISBN 10: 0-13446-914-3
ISBN 13: 978-0-13446-914-0

Chapter 2 - Section 2.1 - Complex Numbers - Exercise Set - Page 315: 88

Answer

The solution set for the quadratic equation, $-{{x}^{2}}-2x+1=0$ is $\left\{ -1\pm \sqrt{2} \right\}$.

Work Step by Step

Consider the quadratic equation, $-{{x}^{2}}-2x+1=0$ Now, compare the equation with the standard quadratic equation $a{{x}^{2}}+bx+c=0\text{ , }\left( a\ne 0 \right)$. Here, $a=-1,\text{ }b=-2\text{ and }c=1$ Recall that the quadratic formula is given by, $x=\frac{-b\pm \sqrt{{{b}^{2}}-4ac}}{2a}$ Substitute $-1$ for a, $-2$ for b and 1 for c. $x=\frac{-\left( -2 \right)\pm \sqrt{{{\left( -2 \right)}^{2}}-4\left( -1 \right)\left( 1 \right)}}{2\left( -1 \right)}$ Simplify the radical. $\begin{align} & x=\frac{-\left( -2 \right)\pm \sqrt{{{\left( -2 \right)}^{2}}-4\left( -1 \right)\left( 1 \right)}}{2\left( -1 \right)} \\ & =\frac{2\pm \sqrt{4+4}}{-2} \\ & =\frac{2\pm \sqrt{8}}{-2} \end{align}$ Take the square root. $\begin{align} & x=\frac{2\pm \sqrt{4+4}}{-2} \\ & =\frac{2\pm \sqrt{8}}{-2} \\ & =\frac{2\pm 2\sqrt{2}}{-2} \end{align}$ Strike off the common factor. $\begin{align} & x=\frac{2\pm 2\sqrt{2}}{-2} \\ & =\frac{2\left( 1\pm \sqrt{2} \right)}{-2} \\ & =-1\pm \sqrt{2} \end{align}$ The above formula represents two values of x, one with a positive sign and one with a negative sign. First, take the positive sign. $x=-1+\sqrt{2}$ Secondly, take the negative sign, $x=-1-\sqrt{2}$ Thus, the two values of x are $-1+\sqrt{2}$ and $-1\pm \sqrt{2}$. Therefore, the solution set for the quadratic equation $-{{x}^{2}}-2x+1=0$ is $\left\{ -1\pm \sqrt{2} \right\}$. Verify whether the solution set $\left\{ -1\pm \sqrt{2} \right\}$ satisfies the equation $-{{x}^{2}}-2x+1=0$. Substitute the value of x in the left hand side of the equation and check if it’s equal to the right hand side. Substitute $-1+\sqrt{2}$ for x, $\begin{align} & -{{x}^{2}}-2x+1=-{{\left( -1+\sqrt{2} \right)}^{2}}-2\left( -1+\sqrt{2} \right)+1 \\ & =-1-2+2\sqrt{2}+2-2\sqrt{2}+1 \\ & =0 \end{align}$ Thus, the right hand side of the equation is equal to the left hand side of the equation. Substitute $-1-\sqrt{2}$ for x, $\begin{align} & -{{x}^{2}}-2x+1=-{{\left( -1-\sqrt{2} \right)}^{2}}-2\left( -1-\sqrt{2} \right)+1 \\ & =-1-2-2\sqrt{2}+2+2\sqrt{2}+1 \\ & =0 \end{align}$ Thus, the right hand side of the equation is equal to the left hand side of the equation. Therefore, the solution set for the quadratic equation $-{{x}^{2}}-2x+1=0$ is $\left\{ -1\pm \sqrt{2} \right\}$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.