Precalculus (6th Edition) Blitzer

Published by Pearson
ISBN 10: 0-13446-914-3
ISBN 13: 978-0-13446-914-0

Chapter 2 - Section 2.1 - Complex Numbers - Exercise Set - Page 315: 78

Answer

The statement, “$\left( 3+7i \right)\left( 3-7i \right)$ is an imaginary number” is false. The true statement is, $\left( 3+7i \right)\left( 3-7i \right)$ is a real number.

Work Step by Step

Consider the expression, $\left( 3+7i \right)\left( 3-7i \right)$ Use the FOIL method. $\begin{align} & \left( 3+7i \right)\left( 3-7i \right)={{3}^{2}}+3\left( -7i \right)+7i\cdot 3+7i\left( -7i \right) \\ & =9-21i+21i-49{{i}^{2}} \\ & =9-49{{i}^{2}} \end{align}$ Replace the value ${{i}^{2}}=-1$. $\left( 3+7i \right)\left( 3-7i \right)=9-49\left( -1 \right)$ Simplify the real terms. $\begin{align} & \left( 3+7i \right)\left( 3-7i \right)=9+49 \\ & =58 \end{align}$ The expression $\left( 3+7i \right)\left( 3-7i \right)$ is equal to $58$, which is a real number. Therefore, the statement, “$\left( 3+7i \right)\left( 3-7i \right)$ is an imaginary number” is false.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.