Precalculus (6th Edition) Blitzer

Published by Pearson
ISBN 10: 0-13446-914-3
ISBN 13: 978-0-13446-914-0

Chapter 2 - Section 2.1 - Complex Numbers - Exercise Set - Page 315: 54

Answer

The standard form of the expression ${{\left( 4-i \right)}^{2}}-{{\left( 1+2i \right)}^{2}}$ is $18-12i$.

Work Step by Step

Consider the expression,${{\left( 4-i \right)}^{2}}-{{\left( 1+2i \right)}^{2}}$ Use the formula ${{\left( a+b \right)}^{2}}={{a}^{2}}+2ab+{{b}^{2}}$ and ${{\left( a-b \right)}^{2}}={{a}^{2}}-2ab+{{b}^{2}}$. \[\begin{align} & {{\left( 4-i \right)}^{2}}-{{\left( 1+2i \right)}^{2}}=\left( {{4}^{2}}-2\cdot 4\cdot i+{{i}^{2}} \right)-\left( {{1}^{2}}+2\cdot 1\cdot 2i+{{\left( 2i \right)}^{2}} \right) \\ & =\left( 16-8i+{{i}^{2}} \right)-\left( 1+4i+4{{i}^{2}} \right) \\ & =16-8i+{{i}^{2}}-1-4i-4{{i}^{2}} \end{align}\] Combine real and imaginary terms. \[\begin{align} & {{\left( 4-i \right)}^{2}}-{{\left( 1+2i \right)}^{2}}=16-1-8i-4i+{{i}^{2}}-4{{i}^{2}} \\ & =15-12i-3{{i}^{2}} \end{align}\] Replace the value ${{i}^{2}}=-1$. \[\begin{align} & {{\left( 4-i \right)}^{2}}-{{\left( 1+2i \right)}^{2}}=15-12i-3\left( -1 \right) \\ & =15+3-12i \\ & =18-12i \end{align}\] Therefore, the standard form of the expression ${{\left( 4-i \right)}^{2}}-{{\left( 1+2i \right)}^{2}}$ is $18-12i$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.