Precalculus (6th Edition) Blitzer

Published by Pearson
ISBN 10: 0-13446-914-3
ISBN 13: 978-0-13446-914-0

Chapter 2 - Section 2.1 - Complex Numbers - Exercise Set - Page 315: 72

Answer

The error in the expression is $\sqrt{-9}\cdot \sqrt{-9}\ne \sqrt{81}$ but the expression ${{\left( \sqrt{-9} \right)}^{2}}=\sqrt{-9}\cdot \sqrt{-9}$ is correct.

Work Step by Step

Consider the expression, ${{\left( \sqrt{-9} \right)}^{2}}=\sqrt{-9}\cdot \sqrt{-9}=\sqrt{81}$ Take the first part of the expression. ${{\left( \sqrt{-9} \right)}^{2}}=\sqrt{-9}\cdot \sqrt{-9}$ The principal square root of a negative number is such that for any positive real number $b$, $\sqrt{-b}=i\sqrt{b}$ Express all the square roots of a negative numbers in terms of $i$. $\begin{align} & {{\left( \sqrt{-9} \right)}^{2}}=\left( i\sqrt{9} \right)\cdot \left( i\sqrt{9} \right) \\ & ={{i}^{2}}{{\left( \sqrt{9} \right)}^{2}} \end{align}$ The imaginary unit is $i=\sqrt{-1}$, where ${{i}^{2}}=-1$. Replace the value ${{i}^{2}}=-1$. $\begin{align} & {{\left( \sqrt{-9} \right)}^{2}}=\left( -1 \right){{\left( \sqrt{9} \right)}^{2}} \\ & =\left( -1 \right)\left( 9 \right) \\ & =-9 \end{align}$ The value of ${{\left( \sqrt{-9} \right)}^{2}}$ is equal to $-9$. The error in the expression is such that, ${{\left( \sqrt{-9} \right)}^{2}}=\sqrt{-9}\cdot \sqrt{-9}$ and $\sqrt{-9}\cdot \sqrt{-9}\ne \sqrt{81}$ $\begin{align} & \sqrt{-9}\cdot \sqrt{-9}\ne \sqrt{\left( -9 \right)\left( -9 \right)} \\ & \ne \sqrt{{{\left( -1 \right)}^{2}}{{\left( 9 \right)}^{2}}} \\ & \ne \sqrt{81} \end{align}$ Therefore, the error in the expression is $\sqrt{-9}\cdot \sqrt{-9}\ne \sqrt{81}$ but the expression ${{\left( \sqrt{-9} \right)}^{2}}=\sqrt{-9}\cdot \sqrt{-9}$ is correct.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.