Precalculus (6th Edition) Blitzer

Published by Pearson
ISBN 10: 0-13446-914-3
ISBN 13: 978-0-13446-914-0

Chapter 11 - Section 11.3 - Limits and Continuity - Exercise Set - Page 1161: 31

Answer

The number for which the function $ f\left( x \right)=\left\{ \begin{align} & x+6\text{ if }x\le 0 \\ & \text{6 if }02 \end{align} \right.$ is discontinuous at $ x=2$.

Work Step by Step

Consider the function $ f\left( x \right)=\left\{ \begin{align} & x+6\text{ if }x\le 0 \\ & \text{6 if }02 \end{align} \right.$, First check the discontinuity of the function at $ x=0$ Find the value of $ f\left( x \right)$ at $ x=0$, From the definition of the function, for $ x=0$, $ f\left( x \right)=x+6$ Then the value of $ f\left( x \right)$ at $ x=0$ is, $\begin{align} & f\left( 0 \right)=0+6 \\ & =6 \end{align}$ The function is defined at the point $ x=0$. Now find the value of $\,\underset{x\to 0}{\mathop{\lim }}\,f\left( x \right)$, First find the left-hand limit of $\,f\left( x \right)$, That is, $\underset{x\to {{0}^{-}}}{\mathop{\lim }}\,f\left( x \right)=0+6=6$ Now find the right-hand limit of $\,f\left( x \right)$, That is, $\underset{x\to {{0}^{+}}}{\mathop{\lim }}\,f\left( x \right)=6$ Since the left-hand limit and right-hand limit are equal, that is $\underset{x\to {{0}^{-}}}{\mathop{\lim }}\,f\left( x \right)=6=\underset{x\to {{0}^{+}}}{\mathop{\lim }}\,f\left( x \right)$ Thus $\,\underset{x\to 0}{\mathop{\lim }}\,f\left( x \right)=6$. From the above steps, $\,\underset{x\to 0}{\mathop{\lim }}\,f\left( x \right)=6=f\left( 0 \right)$ Thus, the function satisfies all the properties of being continuous. Hence, the function $ f\left( x \right)=\left\{ \begin{align} & x+6\text{ if }x\le 0 \\ & \text{6 if }02 \end{align} \right.$ is continuous at $ x=0$. Now check the discontinuity of the function at $ x=2$ Find the value of $ f\left( x \right)$ at $ x=2$, From the definition of the function, $ f\left( 2 \right)=6$ The function is defined at the point $ x=2$. Now find the value of $\,\underset{x\to 2}{\mathop{\lim }}\,f\left( x \right)$, First find the left-hand limit of $\,f\left( x \right)$, That is, $\underset{x\to {{2}^{-}}}{\mathop{\lim }}\,f\left( x \right)=6$ Now find the right-hand limit of $\,f\left( x \right)$, That is, $\underset{x\to {{2}^{+}}}{\mathop{\lim }}\,f\left( x \right)={{2}^{2}}+1=5$ Since the left-hand limit and right-hand limit are not equal, that is $\underset{x\to {{2}^{-}}}{\mathop{\lim }}\,f\left( x \right)\ne \underset{x\to {{2}^{+}}}{\mathop{\lim }}\,f\left( x \right)$ Thus, $\,\underset{x\to 2}{\mathop{\lim }}\,f\left( x \right)$ do not exist. Thus, the function does not satisfy the second property of being continuous. Hence, the function $ f\left( x \right)=\left\{ \begin{align} & x+6\text{ if }x\le 0 \\ & \text{6 if }02 \end{align} \right.$ is discontinuous at $ x=2$. Thus, the number for which the function $ f\left( x \right)=\left\{ \begin{align} & x+6\text{ if }x\le 0 \\ & \text{6 if }02 \end{align} \right.$ is discontinuous at $ x=2$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.