Precalculus (6th Edition) Blitzer

Published by Pearson
ISBN 10: 0-13446-914-3
ISBN 13: 978-0-13446-914-0

Chapter 11 - Section 11.3 - Limits and Continuity - Exercise Set - Page 1161: 27

Answer

The function $ f\left( x \right)=\left\{ \begin{align} & x-1\text{ if }x\le 1 \\ & {{x}^{2}}\text{ if }x>1 \end{align} \right.$ is discontinuous for $ x=1$.

Work Step by Step

Consider the function $ f\left( x \right)=\left\{ \begin{align} & x-1\text{ if }x\le 1 \\ & {{x}^{2}}\text{ if }x>1 \end{align} \right.$, Find the value of $ f\left( x \right)$ at $ x=1$, From the definition of the function, for $ x=1$, $ f\left( x \right)=x-1$ Then the value of $ f\left( x \right)$ at $ x=1$ is, $\begin{align} & f\left( 1 \right)=1-1 \\ & =0 \end{align}$ The function is defined at the point $ x=1$. Now find the value of $\,\underset{x\to 1}{\mathop{\lim }}\,f\left( x \right)$, First find the left-hand limit of $\,f\left( x \right)$, That is, $\underset{x\to {{1}^{-}}}{\mathop{\lim }}\,f\left( x \right)=1-1=0$ Now find the right-hand limit of $\,f\left( x \right)$, That is, $\underset{x\to {{1}^{+}}}{\mathop{\lim }}\,f\left( x \right)={{1}^{2}}=1$ Since, the left-hand limit and right-hand limit are not equal, that is $\underset{x\to {{1}^{-}}}{\mathop{\lim }}\,f\left( x \right)\ne \underset{x\to {{1}^{+}}}{\mathop{\lim }}\,f\left( x \right)$. Thus, $\,\underset{x\to 1}{\mathop{\lim }}\,f\left( x \right)$ does not exist. Thus, the function does not satisfy the second property of being continuous. Hence, the function $ f\left( x \right)=\left\{ \begin{align} & x-1\text{ if }x\le 1 \\ & {{x}^{2}}\text{ if }x>1 \end{align} \right.$ is discontinuous at $ x=1$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.