Precalculus (6th Edition) Blitzer

Published by Pearson
ISBN 10: 0-13446-914-3
ISBN 13: 978-0-13446-914-0

Chapter 11 - Section 11.3 - Limits and Continuity - Exercise Set - Page 1161: 28

Answer

The function $ f\left( x \right)=\left\{ \begin{align} & x-2\text{ if }x\le 2 \\ & {{x}^{2}}-1\text{ if }x>2 \end{align} \right.$ is discontinuous for $ x=2$.

Work Step by Step

Consider the function $ f\left( x \right)=\left\{ \begin{align} & x-2\text{ if }x\le 2 \\ & {{x}^{2}}-1\text{ if }x>2 \end{align} \right.$ Find the value of $ f\left( x \right)$ at $ x=2$, From the definition of the function, for $ x=2$, $ f\left( x \right)=x-2$ Then the value of $ f\left( x \right)$ at $ x=2$ is, $\begin{align} & f\left( 2 \right)=2-2 \\ & =0 \end{align}$ The function is defined at the point $ x=2$. Now find the value of $\,\underset{x\to 2}{\mathop{\lim }}\,f\left( x \right)$, First find the left-hand limit of $\,f\left( x \right)$, That is, $\underset{x\to {{2}^{-}}}{\mathop{\lim }}\,f\left( x \right)=2-2=0$ Now find the right-hand limit of $\,f\left( x \right)$, That is, $\underset{x\to {{2}^{+}}}{\mathop{\lim }}\,f\left( x \right)={{2}^{2}}-1=3$ Since, the left-hand limit and right-hand limit are not equal, that is $\underset{x\to {{2}^{-}}}{\mathop{\lim }}\,f\left( x \right)\ne \underset{x\to {{2}^{+}}}{\mathop{\lim }}\,f\left( x \right)$ Thus, $\,\underset{x\to 2}{\mathop{\lim }}\,f\left( x \right)$ does not exist. Thus, the function does not satisfy the second property of being continuous. Hence, the function $ f\left( x \right)=\left\{ \begin{align} & x-2\text{ if }x\le 2 \\ & {{x}^{2}}-1\text{ if }x>2 \end{align} \right.$ is discontinuous at $ x=2$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.