Precalculus (6th Edition) Blitzer

Published by Pearson
ISBN 10: 0-13446-914-3
ISBN 13: 978-0-13446-914-0

Chapter 11 - Section 11.3 - Limits and Continuity - Exercise Set - Page 1161: 22

Answer

The function $ f\left( x \right)=\frac{\left( x+2 \right)}{\left( x+2 \right)\left( x-5 \right)}$ is discontinuous for the points $-2\text{ and 5}$.

Work Step by Step

Consider the rational function $ f\left( x \right)=\frac{\left( x+2 \right)}{\left( x+2 \right)\left( x-5 \right)}$, Here, $ p\left( x \right)=x+2\text{ and }q\left( x \right)=\left( x+2 \right)\left( x-5 \right)$ Find the zeros of the function $ q\left( x \right)=\left( x+2 \right)\left( x-5 \right)$ by $ q\left( x \right)=0$, $\left( x+2 \right)\left( x-5 \right)=0$ Solve for the x, $\begin{align} & \left( x+2 \right)=0 \\ & x=-2 \end{align}$ Or $\begin{align} & \left( x-5 \right)=0 \\ & x=5 \end{align}$ The zeros of the function $ q\left( x \right)=\left( x+2 \right)\left( x-5 \right)$ are $-2\text{ and 5}$. Thus, the function $ f\left( x \right)=\frac{\left( x+2 \right)}{\left( x+2 \right)\left( x-5 \right)}$ is discontinuous for the points $-2\text{ and 5}$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.