Answer
a) The value of $\,\underset{x\to {{2}^{-}}}{\mathop{\lim }}\,f\left( x \right)$ is $32$.
b) The value of $\,\underset{x\to {{2}^{+}}}{\mathop{\lim }}\,f\left( x \right)$ is $32$.
c) The value of $\,\underset{x\to 2}{\mathop{\lim }}\,f\left( x \right)$ is $32$.
Work Step by Step
(a)
Consider the function $f\left( x \right)=\left\{ \begin{align}
& \frac{{{x}^{4}}-16}{x-2}\text{ if }x\ne 2 \\
& 32\text{ if }x=2
\end{align} \right.$
As the value of $x$ nears $2$ from the left, the function takes the value $\frac{{{x}^{4}}-16}{x-2}$.
Find the value of $\,\underset{x\to {{2}^{-}}}{\mathop{\lim }}\,f\left( x \right)$ ,
$\begin{align}
& \,\,\underset{x\to {{2}^{-}}}{\mathop{\lim }}\,f\left( x \right)=\,\underset{x\to {{2}^{-}}}{\mathop{\lim }}\,\frac{{{x}^{4}}-16}{x-2} \\
& =\underset{x\to {{2}^{-}}}{\mathop{\lim }}\,\frac{\left( {{x}^{2}}-4 \right)\left( {{x}^{2}}+4 \right)}{x-2} \\
& =\underset{x\to {{2}^{-}}}{\mathop{\lim }}\,\frac{\left( x-2 \right)\left( x+2 \right)\left( {{x}^{2}}+4 \right)}{x-2} \\
& =\underset{x\to {{2}^{-}}}{\mathop{\lim }}\,\left( x+2 \right)\left( {{x}^{2}}+4 \right)
\end{align}$
Now, take the limit inside and calculate the value of $\,\underset{x\to {{2}^{-}}}{\mathop{\lim }}\,f\left( x \right)$ ,
$\begin{align}
& \,\,\underset{x\to {{2}^{-}}}{\mathop{\lim }}\,f\left( x \right)=\left( \underset{x\to {{2}^{-}}}{\mathop{\lim }}\,x+2 \right)\left( \underset{x\to {{2}^{-}}}{\mathop{\lim }}\,{{x}^{2}}+4 \right) \\
& =\left( 2+2 \right)\left( {{2}^{2}}+4 \right) \\
& =\left( 4 \right)\left( 8 \right) \\
& =32
\end{align}$
Thus, the value of $\,\underset{x\to {{2}^{-}}}{\mathop{\lim }}\,f\left( x \right)$ is $32$.
(b)
Consider the function $f\left( x \right)=\left\{ \begin{align}
& \frac{{{x}^{4}}-16}{x-2}\text{ if }x\ne 2 \\
& 32\text{ if }x=2
\end{align} \right.$
As the value of $x$ nears $2$ from the right, the function takes the value $\frac{{{x}^{4}}-16}{x-2}$.
Find the value of $\,\underset{x\to {{2}^{+}}}{\mathop{\lim }}\,f\left( x \right)$ ,
$\begin{align}
& \,\underset{x\to {{2}^{+}}}{\mathop{\lim }}\,f\left( x \right)=\underset{x\to {{2}^{+}}}{\mathop{\lim }}\,\frac{{{x}^{4}}-16}{x-2} \\
& =\underset{x\to {{2}^{+}}}{\mathop{\lim }}\,\frac{\left( {{x}^{2}}-4 \right)\left( {{x}^{2}}+4 \right)}{x-2} \\
& =\underset{x\to {{2}^{+}}}{\mathop{\lim }}\,\frac{\left( x-2 \right)\left( x+2 \right)\left( {{x}^{2}}+4 \right)}{x-2} \\
& =\underset{x\to {{2}^{+}}}{\mathop{\lim }}\,\left( x+2 \right)\left( {{x}^{2}}+4 \right)
\end{align}$
Now, take the limit inside and calculate the value of $\,\underset{x\to {{2}^{+}}}{\mathop{\lim }}\,f\left( x \right)$ ,
$\begin{align}
& \,\underset{x\to {{2}^{+}}}{\mathop{\lim }}\,f\left( x \right)=\left( \,\underset{x\to {{2}^{+}}}{\mathop{\lim }}\,x+2 \right)\left( \,\underset{x\to {{2}^{+}}}{\mathop{\lim }}\,{{x}^{2}}+4 \right) \\
& =\left( 2+2 \right)\left( {{2}^{2}}+4 \right) \\
& =\left( 4 \right)\left( 8 \right) \\
& =32
\end{align}$
Thus, the value of $\,\underset{x\to {{2}^{+}}}{\mathop{\lim }}\,f\left( x \right)$ is $32$.
(c)
Consider the function $f\left( x \right)=\left\{ \begin{align}
& \frac{{{x}^{4}}-16}{x-2}\text{ if }x\ne 2 \\
& 32\text{ if }x=2
\end{align} \right.$
From part (a), the value of $\,\underset{x\to {{2}^{-}}}{\mathop{\lim }}\,f\left( x \right)$ is $32$ and the value of $\,\underset{x\to {{2}^{+}}}{\mathop{\lim }}\,f\left( x \right)$ is $32$.
Since $\,\underset{x\to {{2}^{-}}}{\mathop{\lim }}\,f\left( x \right)=\underset{x\to {{2}^{+}}}{\mathop{\lim }}\,f\left( x \right)$ ,
Thus, the value of $\,\underset{x\to 2}{\mathop{\lim }}\,f\left( x \right)$ exists and is equal to $32$.