Precalculus (6th Edition) Blitzer

Published by Pearson
ISBN 10: 0-13446-914-3
ISBN 13: 978-0-13446-914-0

Chapter 11 - Mid-Chapter Check Point - Page 1163: 7

Answer

The value of $\underset{x\to 1}{\mathop{\lim }}\,\sqrt{10+f\left( x \right)}$ is $3$.

Work Step by Step

To find the value of $\underset{x\to 1}{\mathop{\lim }}\,\sqrt{10+f\left( x \right)}$, find the value of $\underset{x\to 1}{\mathop{\lim }}\,f\left( x \right)$. It is seen from the graph that as the value of x nears $1$ from the left or right, the value of the function $ f\left( x \right)$ nears $-1$. Thus, $\underset{x\to 1}{\mathop{\lim }}\,f\left( x \right)=-1$ Now find the value of $\underset{x\to 1}{\mathop{\lim }}\,\sqrt{10+f\left( x \right)}$, $\begin{align} & \underset{x\to 1}{\mathop{\lim }}\,\sqrt{10+f\left( x \right)}=\sqrt{10+\underset{x\to 1}{\mathop{\lim f\left( x \right)}}\,} \\ & =\sqrt{10+\left( -1 \right)} \\ & =\sqrt{9} \\ & =3 \end{align}$ Thus, the value of $\underset{x\to 1}{\mathop{\lim }}\,\sqrt{10+f\left( x \right)}$ is $3$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.