Precalculus (6th Edition) Blitzer

Published by Pearson
ISBN 10: 0-13446-914-3
ISBN 13: 978-0-13446-914-0

Chapter 11 - Mid-Chapter Check Point - Page 1165: 20

Answer

The function $f\left( x \right)=\left\{ \begin{align} & \sqrt{3-x}\text{ if }x\le 3 \\ & {{x}^{2}}-3x\text{ if }x>3 \end{align} \right.$ is continuous at $3$.

Work Step by Step

Consider the function $f\left( x \right)=\left\{ \begin{align} & \sqrt{3-x}\text{ if }x\le 3 \\ & {{x}^{2}}-3x\text{ if }x>3 \end{align} \right.$ , Find the value of $f\left( x \right)$ at $a=3$ , From the definition of the function, for $a=3$, the function takes the value $\sqrt{3-x}$ , Thus, $\begin{align} & f\left( 3 \right)=\sqrt{3-3} \\ & =0 \end{align}$ The function is defined at the point $a=3$. Now find the value of $\,\underset{x\to 3}{\mathop{\lim }}\,f\left( x \right)$ , First find the left hand limit of $\,f\left( x \right)$ , As x nears $3$ from the left, the function $\,f\left( x \right)$ takes the value $\sqrt{3-x}$ , Thus, $\underset{x\to {{3}^{-}}}{\mathop{\lim }}\,f\left( x \right)=\sqrt{3-3}=0$ Now find the right hand limit of $\,f\left( x \right)$ , As x nears $3$ from the right, the function $\,f\left( x \right)$ takes the value ${{x}^{2}}-3x$ , Thus, $\underset{x\to {{3}^{+}}}{\mathop{\lim }}\,f\left( x \right)={{3}^{2}}-3\left( 3 \right)=0$ Since the left hand limit and right hand limit are equal, that is $\underset{x\to {{3}^{-}}}{\mathop{\lim }}\,f\left( x \right)=0=\underset{x\to {{3}^{+}}}{\mathop{\lim }}\,f\left( x \right)$ Thus, $\underset{x\to 3}{\mathop{\lim }}\,f\left( x \right)=0$ From the above steps, $\underset{x\to 3}{\mathop{\lim }}\,f\left( x \right)=0=f\left( 3 \right)$ Since, the function satisfies all the properties of being continuous, Hence, the function $f\left( x \right)=\left\{ \begin{align} & \sqrt{3-x}\text{ if }x\le 3 \\ & {{x}^{2}}-3x\text{ if }x>3 \end{align} \right.$ is continuous at $3$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.