Precalculus (6th Edition) Blitzer

Published by Pearson
ISBN 10: 0-13446-914-3
ISBN 13: 978-0-13446-914-0

Chapter 11 - Mid-Chapter Check Point - Page 1163: 18

Answer

a) The value of $\,\underset{x\to {{4}^{-}}}{\mathop{\lim }}\,f\left( x \right)$ is $1$. b) The value of $\,\underset{x\to {{4}^{+}}}{\mathop{\lim }}\,f\left( x \right)$ is $0$. c) The value of $\,\underset{x\to 4}{\mathop{\lim }}\,f\left( x \right)$ does not exist.

Work Step by Step

(a) Consider the function $f\left( x \right)=\left\{ \begin{align} & 9-2x\text{ if }x<4 \\ & \sqrt{x-4}\text{ if }x\ge 4 \end{align} \right.$ , As the value of $x$ nears $4$ from the left, the function takes the value $9-2x$. Find the value of $\,\underset{x\to {{4}^{-}}}{\mathop{\lim }}\,f\left( x \right)$ , $\begin{align} & \,\underset{x\to {{4}^{-}}}{\mathop{\lim }}\,f\left( x \right)=\,\underset{x\to {{4}^{-}}}{\mathop{\lim }}\,\left( 9-2x \right) \\ & =9-2\underset{x\to {{4}^{-}}}{\mathop{\lim }}\,x \\ & =9-8 \\ & =1 \end{align}$ Thus, the value of $\,\underset{x\to {{4}^{-}}}{\mathop{\lim }}\,f\left( x \right)$ is $1$. (b) Consider the function $f\left( x \right)=\left\{ \begin{align} & 9-2x\text{ if }x<4 \\ & \sqrt{x-4}\text{ if }x\ge 4 \end{align} \right.$ , As the value of $x$ nears $4$ from the right, the function takes the value $\sqrt{x-4}$. Find the value of $\,\underset{x\to {{4}^{+}}}{\mathop{\lim }}\,f\left( x \right)$ , $\begin{align} & \,\underset{x\to {{4}^{+}}}{\mathop{\lim }}\,f\left( x \right)=\,\,\underset{x\to {{4}^{+}}}{\mathop{\lim }}\,\sqrt{x-4} \\ & =\sqrt{\underset{x\to {{4}^{+}}}{\mathop{\lim }}\,x-4} \\ & =\sqrt{4-4} \\ & =0 \end{align}$ Thus, the value of $\,\underset{x\to {{4}^{+}}}{\mathop{\lim }}\,f\left( x \right)$ is $0$. (c) Consider the function $f\left( x \right)=\left\{ \begin{align} & 9-2x\text{ if }x<4 \\ & \sqrt{x-4}\text{ if }x\ge 4 \end{align} \right.$ , From the part (a), the value of $\,\underset{x\to {{4}^{-}}}{\mathop{\lim }}\,f\left( x \right)$ is $1$ and the value of $\,\underset{x\to {{4}^{+}}}{\mathop{\lim }}\,f\left( x \right)$ is $0$. Since $\,\underset{x\to {{4}^{-}}}{\mathop{\lim }}\,f\left( x \right)\ne \,\underset{x\to {{4}^{+}}}{\mathop{\lim }}\,f\left( x \right)$ , Thus, the value of $\,\underset{x\to 4}{\mathop{\lim }}\,f\left( x \right)$ does not exist.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.