Precalculus (6th Edition) Blitzer

Published by Pearson
ISBN 10: 0-13446-914-3
ISBN 13: 978-0-13446-914-0

Chapter 11 - Mid-Chapter Check Point - Page 1163: 14

Answer

The value of $\underset{x\to 5}{\mathop{\lim }}\,\frac{2{{x}^{2}}-x+4}{x-1}$ is $\frac{49}{4}$.

Work Step by Step

Consider the function $ f\left( x \right)=\frac{2{{x}^{2}}-x+4}{x-1}$, The functions $ g\left( x \right)=2{{x}^{2}}-x+4$ and $ h\left( x \right)=x-1$ are polynomial. To find the value of $\underset{x\to 5}{\mathop{\lim }}\,\frac{2{{x}^{2}}-x+4}{x-1}$, $\begin{align} & \underset{x\to 5}{\mathop{\lim }}\,\frac{2{{x}^{2}}-x+4}{x-1}=\frac{2\underset{x\to 5}{\mathop{\lim }}\,{{x}^{2}}-\underset{x\to 5}{\mathop{\lim }}\,x+4}{\underset{x\to 5}{\mathop{\lim }}\,x-1} \\ & =\frac{2{{\left( 5 \right)}^{2}}-\left( 5 \right)+4}{\left( 5 \right)-1} \\ & =\frac{2\left( 25 \right)-5+4}{4} \\ & =\frac{50-1}{4} \end{align}$ $=\frac{49}{4}$ Thus, the value of $\underset{x\to 5}{\mathop{\lim }}\,\frac{2{{x}^{2}}-x+4}{x-1}$ is $\frac{49}{4}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.