Answer
$210x^6$
Work Step by Step
Calculate the fifth term for $(x-1)^{10}$ by using General formula such as:$(m+n)^r=\displaystyle \binom{r}{k}m^{r-k}n^k$
and $\displaystyle \binom{r}{k}=\dfrac{r!}{k!(r-k)!}$
This implies, $(x-1)^{10}=\displaystyle \binom{10}{4}x^{({10-4})}(-1)^4$
or,$=\dfrac{10!}{4!(10-4)!}(x)^{6}(-1)^4$
or, $=\dfrac{ 10 \times 9 \times 8 \times 7 \times 6!}{4 \times 3 \times 2 \times 1(6!)}x^{6}$
or, $=210x^6$