Answer
$240x^4y^2$
Work Step by Step
Calculate the third term for $(2x+y)^{6}$ by using General formula such as:$(m+n)^r=\displaystyle \binom{r}{k}m^{r-k}n^k$
and $\displaystyle \binom{r}{k}=\dfrac{r!}{k!(r-k)!}$
This implies, $(2x+y)^{6}=\displaystyle \binom{6}{2}(2x)^{6-2}y^2$
or, $=\dfrac{6!}{2!(6-2)!}(2x)^{4}y^2$
or, $=\dfrac{6 \times 5 \times 4!}{2 \times 1(4!)}(2x)^{4}y^2$
or, $=240x^4y^2$