Answer
$x^8+16x^7+112x^6$
Work Step by Step
Calculate first three terms for $(x+2)^8$ by using Binomial Theorem.
This implies
$(x+2)^8=\displaystyle \binom{8}{0}(x)^82^0+\displaystyle \binom{8}{1}(x)^72^1+\displaystyle \binom{8}{2}(x)^62^2$
or, $=x^8+8x^7(2)+(28)x^6(4)$
or, $=x^8+16x^7+112x^6$