Precalculus (6th Edition) Blitzer

Published by Pearson
ISBN 10: 0-13446-914-3
ISBN 13: 978-0-13446-914-0

Chapter 10 - Section 10.3 - Geoetric Sequences and Series - Exercise Set - Page 1074: 62

Answer

$1140$.

Work Step by Step

When we consider the sequences provided, $\begin{align} & \{{{a}_{n}}\}=-5,10,-20,40,\ldots \\ & \{{{b}_{n}}\}=10,-5,-20,-35,\ldots \\ & \{{{c}_{n}}\}=-2,1,-\frac{1}{2},\frac{1}{4},\ldots \end{align}$ We get ${{a}_{1}}=-5,{{a}_{2}}=10,{{a}_{3}}=-20$. So we can clearly observe that, $\begin{align} & \frac{{{a}_{2}}}{{{a}_{1}}}=\frac{{{a}_{3}}}{{{a}_{2}}} \\ & =-2 \end{align}$ Thus, this is a geometric sequence with the common ratio being $ r=-2$. The sum of the first $ n $ terms of a geometric sequence is ${{S}_{n}}=\frac{a\times \left( 1-{{r}^{n}} \right)}{1-r}$ where $ a={{a}_{1}}$. Now; $\begin{align} & {{S}_{9}}=\frac{-5\times \left( 1-{{\left( -2 \right)}^{9}} \right)}{1-\left( -2 \right)} \\ & =\frac{-5\times \left( 1+512 \right)}{1+2} \\ & =\frac{-5\times \left( 513 \right)}{3} \\ & =-855 \end{align}$ Likewise, ${{c}_{1}}=-2,{{c}_{2}}=1,{{c}_{3}}=-\frac{1}{2}$. Now we can see that, $\begin{align} & r=\frac{{{a}_{2}}}{{{a}_{1}}} \\ & =\frac{1}{-2} \\ & =-\frac{1}{2} \end{align}$ Also, $\begin{align} & r=\frac{{{a}_{3}}}{{{a}_{2}}} \\ & =\frac{-\frac{1}{2}}{1} \\ & =-\frac{1}{2} \end{align}$ Thus, this is a geometric sequence with common ratio being $ r=-\frac{1}{2}$. The general term of an arithmetic sequence is $ S'{{'}_{\infty }}=\frac{c}{1-r}$ where $ c={{c}_{1}}$. So; $\begin{align} & S'{{'}_{\infty }}=\frac{-2}{1-\left( -\frac{1}{2} \right)} \\ & =\frac{-2}{1+\frac{1}{2}} \\ & =\frac{-2}{\frac{2+1}{2}} \\ & =-\frac{4}{3} \end{align}$ Hence, simply multiply both equations, $\begin{align} & {{S}_{9}}\times S'{{'}_{\infty }}=-855\times \left( -\frac{4}{3} \right) \\ & =\frac{855\times 4}{3} \\ & =\frac{3420}{3} \\ & =1140 \end{align}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.