Answer
$ S_{14}=\dfrac{5461}{24}=227.54$
Work Step by Step
The general formula to find the nth partial sum of a Geometric sequence is given as: $ S_{n}=\dfrac{a(1-r^n)}{(1-r)}$
$ r=\dfrac{a_2}{a_1}=\dfrac{1/12}{-1/24}=-2$ and $ n=14$
Now, $ S_{14}=\dfrac{\dfrac{-1}{24} \times (1-(-2)^{14})}{(1-(-2))}=\dfrac{-1}{24} \times (-5461)$
Our answer is: $ S_{14}=\dfrac{5461}{24}=227.54$