Precalculus (6th Edition) Blitzer

Published by Pearson
ISBN 10: 0-13446-914-3
ISBN 13: 978-0-13446-914-0

Chapter 10 - Section 10.3 - Geoetric Sequences and Series - Exercise Set - Page 1074: 61

Answer

$-140$.

Work Step by Step

Let us take the sequences provided, $\begin{align} & \{{{a}_{n}}\}=-5,10,-20,40,\cdots \\ & \{{{b}_{n}}\}=10,-5,-20,-35,\cdots \\ & \{{{c}_{n}}\}=-2,1,-\frac{1}{2},\frac{1}{4},\cdots \end{align}$ We have ${{a}_{1}}=-5,{{a}_{2}}=10,{{a}_{3}}=-20$. Thus it is clearly seen that $\begin{align} & \frac{{{a}_{2}}}{{{a}_{1}}}=\frac{{{a}_{3}}}{{{a}_{2}}} \\ & =-2 \end{align}$ Hence, this is a geometric sequence with the common ratio being $ r=-2$. We know that the sum of the first $ n $ terms of a geometric sequence is ${{S}_{n}}=\frac{a\times \left( 1-{{r}^{n}} \right)}{1-r}$ where $ a={{a}_{1}}$. So; $\begin{align} & {{S}_{6}}=\frac{-5\times \left( 1-{{\left( -2 \right)}^{6}} \right)}{1-\left( -2 \right)} \\ & {{S}_{6}}=\frac{-5\times \left( 1-64 \right)}{1+2} \\ & {{S}_{6}}=\frac{-5\times \left( -63 \right)}{3} \\ & {{S}_{6}}=105 \end{align}$ Similarly, ${{c}_{1}}=-2,{{c}_{2}}=1,{{c}_{3}}=-\frac{1}{2}$. Here we can be see that, $\begin{align} & r=\frac{{{a}_{2}}}{{{a}_{1}}} \\ & r=\frac{1}{-2} \\ & r=-\frac{1}{2} \end{align}$ Also, $\begin{align} & r=\frac{{{a}_{3}}}{{{a}_{2}}} \\ & r=\frac{-\frac{1}{2}}{1} \\ & r=-\frac{1}{2} \end{align}$ Thus, this is a geometric sequence with common ratio being $ r=-\frac{1}{2}$. The general term of an arithmetic sequence is $ S'{{'}_{\infty }}=\frac{c}{1-r}$ where $ c={{c}_{1}}$. Now; $\begin{align} & S'{{'}_{\infty }}=\frac{-2}{1-\left( -\frac{1}{2} \right)} \\ & =\frac{-2}{1+\frac{1}{2}} \\ & =\frac{-2}{\frac{2+1}{2}} \\ & =-\frac{4}{3} \end{align}$ Thus, we have to multiply both equations, $\begin{align} & {{S}_{6}}\times S'{{'}_{\infty }}=105\times \left( -\frac{4}{3} \right) \\ & =\frac{-105\times 4}{3} \\ & =\frac{-420}{3} \\ & =-140 \end{align}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.