Precalculus (6th Edition) Blitzer

Published by Pearson
ISBN 10: 0-13446-914-3
ISBN 13: 978-0-13446-914-0

Chapter 1 - Test - Page 306: 33

Answer

The value of $\left( f\circ g \right)\left( x \right)$ is $\frac{7x}{2-4x}$ and its domain is $\underline{\left( -\infty ,0 \right)\cup \left( 0,\frac{1}{2} \right)\cup \left( \frac{1}{2},\infty \right)}$

Work Step by Step

Calculate $\left( f\circ g \right)\left( x \right)$ as follows: $\begin{align} & \left( f\circ g \right)\left( x \right)=f\left( g\left( x \right) \right) \\ & =f\left( \frac{2}{x} \right) \\ & =\frac{7}{\frac{2}{x}-4} \\ & =\frac{7x}{2-4x} \end{align}$ The domain is the set of values of $x$ for which the function $f(x)$ can be defined. Since $\left( f\circ g \right)\left( x \right)$ cannot be defined when the denominator becomes zero: $\begin{align} & 2-4x=0 \\ & x=\frac{1}{2} \end{align}$ So, $g\left( x \right)=\frac{2}{x}$ which means the function cannot be defined for $x=0$. This implies that the function is defined for all the real values except $x=\frac{1}{2},0$. Therefore, the domain of the function is $\left( -\infty ,0 \right)\cup \left( 0,\frac{1}{2} \right)\cup \left( \frac{1}{2},\infty \right)$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.