Precalculus (6th Edition) Blitzer

Published by Pearson
ISBN 10: 0-13446-914-3
ISBN 13: 978-0-13446-914-0

Chapter 1 - Test - Page 306: 19

Answer

The value of $\left( \frac{f}{g} \right)\left( x \right)$ and its domain with the functions $f\left( x \right)={{x}^{2}}-x-4$ and $g\left( x \right)=2x-6$ is $\left( -\infty ,3 \right)\cup \left( 3,\infty \right)$.

Work Step by Step

We know that the function $\left( \frac{f}{g} \right)\left( x \right)$ can also be defined as $\frac{f\left( x \right)}{g\left( x \right)}$: $\begin{align} & \left( \frac{f}{g} \right)\left( x \right)=\frac{{{x}^{2}}-x-4}{2x-6} \\ & =\frac{{{x}^{2}}-x-4}{2x-6} \end{align}$ Hence, $\left( \frac{f}{g} \right)\left( x \right)=\frac{{{x}^{2}}-x-4}{2x-6}$. We can see that $\left( \frac{f}{g} \right)\left( x \right)$ is not defined for $x=3$. Therefore, the domain of $\left( \frac{f}{g} \right)\left( x \right)$ is $\left( -\infty ,3 \right)\cup \left( 3,\infty \right)$. Hence, the value of $\left( \frac{f}{g} \right)\left( x \right)$ is $\frac{{{x}^{2}}-x-4}{2x-6}$ and its domain is $\left( -\infty ,3 \right)\cup \left( 3,\infty \right)$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.