Precalculus (6th Edition) Blitzer

Published by Pearson
ISBN 10: 0-13446-914-3
ISBN 13: 978-0-13446-914-0

Chapter 1 - Test - Page 306: 17

Answer

The value of $\frac{f\left( x+h \right)-f\left( x \right)}{h}$ with the functions $f\left( x \right)={{x}^{2}}-x-4$ and $g\left( x \right)=2x-6$ is $2x+h-1$.

Work Step by Step

Now, to find $f\left( x+h \right),$ substitute $x+h$ in place of x. $x\to x+h$ $\begin{align} & \frac{f\left( x+h \right)-f\left( x \right)}{h}=\frac{\left\{ {{\left( x+h \right)}^{2}}-\left( x+h \right)-4 \right\}-\left( {{x}^{2}}-x-4 \right)}{h} \\ & =\frac{{{x}^{2}}+2xh+{{h}^{2}}-x-h-4-{{x}^{2}}+x+4}{h} \\ & =\frac{2xh+{{h}^{2}}-h}{h} \\ & =2x+h-1 \end{align}$ Therefore, $\frac{f\left( x+h \right)-f\left( x \right)}{h}=2x+h-1$. Hence, the value of $\frac{f\left( x+h \right)-f\left( x \right)}{h}$ with the functions $f\left( x \right)={{x}^{2}}-x-4$ and $g\left( x \right)=2x-6$ is $2x+h-1$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.