Answer
The domain of the function $f\left( x \right)$ is $\underline{\left( -\infty ,-5 \right)\cup \left( -5,1 \right)\cup \left( 1,\infty \right)}$.
Work Step by Step
The domain is the set of values of $x$ for which the function $f(x)$ can be defined.
Since the denominator for a fraction can’t be 0, therefore the function cannot be defined for $x=1$ and $x=-5$.
Clearly, there is no other restriction on $f\left( x \right)$, which means that the function can be defined for all the real values except $x=1$ and $x=-5$.
So, the domain of the function is $\left( -\infty ,-5 \right)\cup \left( -5,1 \right)\cup \left( 1,\infty \right)$.