Precalculus (6th Edition) Blitzer

Published by Pearson
ISBN 10: 0-13446-914-3
ISBN 13: 978-0-13446-914-0

Chapter 1 - Section 1.7 - Combinations of Functions; Composite Functions - Exercise Set - Page 259: 95

Answer

The value of x from the functions $f\left( x \right)=2x-5$ , $g\left( x \right)={{x}^{2}}-3x+8$ and $\left( f\circ g \right)\left( x \right)=7$ is $\left\{ 1,2 \right\}$.

Work Step by Step

The composition of f with g can be defined as the function $\left( f\circ g \right)\left( x \right)$: $f\left( g\left( x \right) \right)$ where $f\left( x \right)=2x-5$ and $g\left( x \right)={{x}^{2}}-3x+8$. Consider $\left( f\circ g \right)\left( x \right)=f\left( g\left( x \right) \right)$. Now substitute the value of $g\left( x \right)$ in $f\left( g\left( x \right) \right)$ such that: $f\left( g\left( x \right) \right)=f\left( {{x}^{2}}-3x+8 \right)$ Calculate for the function $f$: $\begin{align} & f\left( {{x}^{2}}-3x+8 \right)=2\left( {{x}^{2}}-3x+8 \right)-5 \\ & =2{{x}^{2}}-6x+16-5 \\ & =2{{x}^{2}}-6x+11 \end{align}$ Thus, $\left( f\circ g \right)\left( x \right)=2{{x}^{2}}-6x+11$. Also, $\left( f\circ g \right)\left( x \right)=7$. Hence, $2{{x}^{2}}-6x+11=7$ Now, solve the above equation for the value of x: Move all the zero terms on one side of the equation and take the non-zero terms on the other side of the equation. $\begin{align} & 2{{x}^{2}}-6x+11=7 \\ & 2{{x}^{2}}-6x+4=0 \end{align}$ Make the factors of the above equation: $\begin{align} & 2{{x}^{2}}-6x+4=0 \\ & 2{{x}^{2}}-2x-4x+4=0 \\ & 2x\left( x-1 \right)-4\left( x-1 \right)=0 \\ & \left( 2x-4 \right)\left( x-1 \right)=0 \end{align}$ Put each of the factors equal to zero to get the value of x: $\begin{align} & \left( 2x-4 \right)=0 \\ & 2x=4 \\ & x=2 \end{align}$ Or $\begin{align} & x-1=0 \\ & x=1 \end{align}$ Hence, the value of x from the functions $f\left( x \right)=2x-5$ , $g\left( x \right)={{x}^{2}}-3x+8$ and $\left( f\circ g \right)\left( x \right)=7$ is $\left\{ 1,2 \right\}$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.