Precalculus (6th Edition) Blitzer

Published by Pearson
ISBN 10: 0-13446-914-3
ISBN 13: 978-0-13446-914-0

Chapter 1 - Section 1.7 - Combinations of Functions; Composite Functions - Exercise Set - Page 259: 89

Answer

The graph is shown below:

Work Step by Step

Curve ${{C}_{1}}$ shows the values of the function $f\left( x \right)$ and the curve ${{C}_{2}}$ shows the values of the function $g\left( x \right)$. The domain of a function can be defined as the set of all values of x for which the function is defined. Thus the domain of the function $f+g$ is $\left[ -4,3 \right]$. At $x=-4$: The value of function $f+g$ is $\begin{align} & \left( f+g \right)\left( -4 \right)=f\left( -4 \right)+g\left( -4 \right) \\ & =5+0 \\ & =5 \end{align}$ At $x=-3$: The value of $f+g$ is $\begin{align} & \left( f+g \right)\left( -3 \right)=f\left( -3 \right)+g\left( -3 \right) \\ & =4+1 \\ & =5 \end{align}$ At $x=-2$: The value of $f+g$ is $\begin{align} & \left( f+g \right)\left( -2 \right)=f\left( -2 \right)+g\left( -2 \right) \\ & =3+2 \\ & =5 \end{align}$ At $x=-1$: The value of $f+g$ is $\begin{align} & \left( f+g \right)\left( -1 \right)=f\left( -1 \right)+g\left( -1 \right) \\ & =3+2 \\ & =5 \end{align}$ At $x=0$: The value of $f+g$ is $\begin{align} & \left( f+g \right)\left( 0 \right)=f\left( 0 \right)+g\left( 0 \right) \\ & =2+1 \\ & =3 \end{align}$ At $x=1$: The value of $f+g$ is $\begin{align} & \left( f+g \right)\left( 1 \right)=f\left( 1 \right)+g\left( 1 \right) \\ & =1+1 \\ & =2 \end{align}$ At $x=2$: The value of $f+g$ is $\begin{align} & \left( f+g \right)\left( 2 \right)=f\left( 2 \right)+g\left( 2 \right) \\ & =-1+1 \\ & =0 \end{align}$ At $x=3$: The value of $f+g$ is $\begin{align} & \left( f+g \right)\left( 3 \right)=f\left( 3 \right)+g\left( 3 \right) \\ & =-3+0 \\ & =-3 \end{align}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.