Answer
The value of $\left( f\circ g \right)\left( -1 \right)$ is $1$.
Work Step by Step
Consider the above graph:
The curve ${{C}_{1}}$, shows the values of the function $f\left( x \right)$ and the curve ${{C}_{2}}$ shows the values of the function $g\left( x \right)$.
The composition of f with g can be defined as the function $\left( f\circ g \right)$ and $\left( f\circ g \right)\left( x \right)$ which is equivalent to $f\left( g\left( x \right) \right)$.
Consider the equation below:
$\left( f\circ g \right)\left( -1 \right)=f\left( g\left( -1 \right) \right)$
Here,
$g\left( -1 \right)=-3$.
Then,
$f\left( g\left( -1 \right) \right)=f\left( -3 \right)$
And value of $f\left( -3 \right)=1$.
So, $\left( f\circ g \right)\left( -1 \right)=1$
Hence, the value of $\left( f\circ g \right)\left( -1 \right)$ is $1$.