Precalculus (6th Edition) Blitzer

Published by Pearson
ISBN 10: 0-13446-914-3
ISBN 13: 978-0-13446-914-0

Chapter 1 - Section 1.3 - More on Functions and Their Graphs - Exercise Set - Page 198: 91

Answer

The difference quotient for the provided function is \[\frac{1}{\sqrt{x+h}+\sqrt{x}}\].

Work Step by Step

Consider the provided function: $f\left( x \right)=\sqrt{x}$. Now, substitute $x=x+h$ in the above equation to find $f\left( x+h \right)$ That is, $f\left( x+h \right)=\sqrt{x+h}$ Now, apply the difference quotient formula, $\begin{align} & \frac{f\left( x+h \right)-f\left( x \right)}{h}=\frac{\left( \sqrt{x+h}-\sqrt{x} \right)\left( \sqrt{x+h}+\sqrt{x} \right)}{h\left( \sqrt{x+h}+\sqrt{x} \right)} \\ & =\frac{{{\left( \sqrt{x+h} \right)}^{2}}-{{\left( \sqrt{x} \right)}^{2}}}{h\left( \sqrt{x+h}+\sqrt{x} \right)} \\ & =\frac{x+h-x}{h\left( \sqrt{x+h}+\sqrt{x} \right)} \\ & =\frac{1}{\sqrt{x+h}+\sqrt{x}} \end{align}$ Hence, the difference quotient for the provided function is $\frac{1}{\sqrt{x+h}+\sqrt{x}}$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.