Precalculus (6th Edition) Blitzer

Published by Pearson
ISBN 10: 0-13446-914-3
ISBN 13: 978-0-13446-914-0

Chapter 1 - Section 1.3 - More on Functions and Their Graphs - Exercise Set - Page 198: 77

Answer

The difference quotient for the provided function is $2x+h-4$.

Work Step by Step

Consider the provided function: $f\left( x \right)={{x}^{2}}-4x+3$. Now, substitute $x=x+h$ in the above equation to find $f\left( x+h \right)$ That is, $\begin{align} & f\left( x+h \right)={{\left( x+h \right)}^{2}}-4\left( x+h \right)+3 \\ & ={{x}^{2}}+2xh+{{h}^{2}}-4x-4h+3 \end{align}$ Now, apply the difference quotient formula, $\begin{align} & \frac{f\left( x+h \right)-f\left( x \right)}{h}=\frac{{{x}^{2}}+2xh+{{h}^{2}}-4x-4h+3-\left( {{x}^{2}}-4x+3 \right)}{h} \\ & =\frac{{{x}^{2}}+2xh+{{h}^{2}}-4x-4h+3-{{x}^{2}}+4x-3}{h} \\ & =\frac{h\left( 2x+h-4 \right)}{h} \\ & =2x+h-4 \end{align}$ Hence, the difference quotient for the provided function is $2x+h-4$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.