Precalculus (6th Edition) Blitzer

Published by Pearson
ISBN 10: 0-13446-914-3
ISBN 13: 978-0-13446-914-0

Chapter 1 - Section 1.3 - More on Functions and Their Graphs - Exercise Set - Page 198: 90

Answer

The difference quotient for the provided function is \[-\frac{1}{2x\left( x+h \right)}\].

Work Step by Step

Consider the provided function: $f\left( x \right)=\frac{1}{2x}$. Now, substitute $x=x+h$ in the above equation to find $f\left( x+h \right)$ That is, $f\left( x+h \right)=\frac{1}{2\left( x+h \right)}$ Now, apply the difference quotient formula, $\begin{align} & \frac{f\left( x+h \right)-f\left( x \right)}{h}=\frac{\frac{1}{2\left( x+h \right)}-\frac{1}{2x}}{h} \\ & =\frac{\frac{x-\left( x+h \right)}{2x\left( x+h \right)}}{h} \\ & =\frac{-h}{2hx\left( x+h \right)} \\ & =-\frac{1}{2x\left( x+h \right)} \end{align}$ Hence, the difference quotient for the provided function is $-\frac{1}{2x\left( x+h \right)}$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.