Precalculus (6th Edition) Blitzer

Published by Pearson
ISBN 10: 0-13446-914-3
ISBN 13: 978-0-13446-914-0

Chapter 1 - Section 1.3 - More on Functions and Their Graphs - Exercise Set - Page 198: 81

Answer

The difference quotient for the provided function is \[-2x-h+2\].

Work Step by Step

Consider the provided function: $f\left( x \right)=-{{x}^{2}}+2x+4$. Now, substitute $x=x+h$ in the above equation to find $f\left( x+h \right)$ That is, $\begin{align} & f\left( x+h \right)=-{{\left( x+h \right)}^{2}}+2\left( x+h \right)+4 \\ & =-{{x}^{2}}-2xh-{{h}^{2}}+2x+2h+4 \end{align}$ Now, apply the difference quotient formula, $\begin{align} & \frac{f\left( x+h \right)-f\left( x \right)}{h}=\frac{-{{x}^{2}}-2xh-{{h}^{2}}+2x+2h+4-\left( -{{x}^{2}}+2x+4 \right)}{h} \\ & =\frac{-{{x}^{2}}-2xh-{{h}^{2}}+2x+2h+4+{{x}^{2}}-2x-4}{h} \\ & =\frac{-2xh-{{h}^{2}}+2h}{h} \\ & =\frac{h\left( -2x-h+2 \right)}{h} \end{align}$ Further solve and get, $\frac{f\left( x+h \right)-f\left( x \right)}{h}=-2x-h+2$ Hence, the difference quotient for the provided function is $-2x-h+2$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.