Answer
$x=\dfrac{1}{3}$
Work Step by Step
We know that $\log_a {x^n}=n\cdot \log_a {x}$, hence the equation $3\log_2{x}=-\log_2{27}$ becomes $\log_2{x^{3}}=\log_2{27^{-1}}.$
RECALL:
$\log_a{b}=\log_a{c} \longrightarrow b=c$
Hence,
$\log_2{x^{3}}=\log_2{27^{-1}}\longrightarrow x^{3}=27^{-1}$.
Solve the equation above to obtain \begin{align*} x^{3}&=27^{-1}\\ x^{3}&=\frac{1}{27} \\ \sqrt[3]{x^{3}}&=\sqrt[3]{\frac{1}{27}}\\ x &=\frac{1}{3}\end{align*}