Precalculus (10th Edition)

Published by Pearson
ISBN 10: 0-32197-907-9
ISBN 13: 978-0-32197-907-0

Chapter 12 - Sequences; Induction; the Binomial Theorem - 12.2 Arithmetic Sequences - 12.2 Assess Your Understanding - Page 814: 50

Answer

$4901$

Work Step by Step

We have to determine the sum: $S=8+8\dfrac{1}{4}+8\dfrac{1}{2}+8\dfrac{3}{4}+9+...+50$ As $8\dfrac{1}{4}-8=8\dfrac{1}{2}-8\dfrac{1}{4}=8\dfrac{3}{4}-\dfrac{1}{2}=...=\dfrac{1}{4}$, the sequence is arithmetic. Determine its first term and the common difference: $a_1=8$ $d=\dfrac{1}{4}$ Determine the number of terms: $a_n=a_1+(n-1)d$ $a_n-a_1=(n-1)d$ $n-1=\dfrac{a_n-a_1}{d}$ $n=\dfrac{a_n-a_1}{d}+1$ $n=\dfrac{50-8}{\dfrac{1}{4}}+1$ $n=169$ Therefore, the given sum contains $169$ terms, so we have to determine the sum of the first $169$ terms. We use the formula: $S_n=\dfrac{n(a_1+a_n)}{2}$ $8+8\dfrac{1}{4}+8\dfrac{1}{2}+8\dfrac{3}{4}+9+...+50=\dfrac{169(8+50)}{2}$ $=\dfrac{169\cdot 58}{2}$ $=4901$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.