Answer
The common difference is: $d=-10.$
The initial term: $a_1=74.$
$a_n=84-10n$, $a_n=a_{n-1}-10$
Work Step by Step
We know that $a_{8}=4,a_{18}=-96$.
Thus the common difference is: $d=\frac{a_k-a_l}{k-l}=\frac{a_{18}-a_{8}}{18-8}=\frac{-96-4)}{10}=-10.$
The initial term: $a_1=a_n-(n-1)d=a_8-(7)(-10)=4-(7)(-10)=74.$
Thus: $a_n=a_1+(n-1)d=74+(n-1)(-10)=84-10n$, $a_n=a_{n-1}+d=a_{n-1}-10$