Answer
True
Work Step by Step
Write the sum $S_n$ of the first $n$ terms of an arithmetic sequence in two ways:
$S_n=a_1+a_2+a_3+.........+a_{n-1}+a_n$
$S_n=a_n+a_{n-1}+.............+a_2+a_1$
Add the equations side by side:
$2S_n=(a_1+a_n)+(a_2+a_{n-1})+.....+(a_n+a_1)$
As $a_1+a_n=a_2+a_{n-1}=.......=a_n+a_1$, we have:
$2S_n=n(a_1+a_n)$
$S_n=\dfrac{n(a_1+a_n)}{2}$
Therefore the statement is TRUE.