Precalculus (10th Edition)

Published by Pearson
ISBN 10: 0-32197-907-9
ISBN 13: 978-0-32197-907-0

Chapter 12 - Sequences; Induction; the Binomial Theorem - 12.1 Sequences - 12.1 Assess Your Understanding - Page 808: 86

Answer

a) See proof b) See proof c) See proof

Work Step by Step

We are given: $u_n=\dfrac{(1+\sqrt 5)^n-(1-\sqrt 5)^n}{2^n\sqrt 5}$ a) Compute $u_1$: $u_1=\dfrac{(1+\sqrt 5)^1-(1-\sqrt 5)^1}{2^1\sqrt 5}=\dfrac{1+\sqrt 5-1+\sqrt 5}{2\sqrt 5}$ $=\dfrac{2\sqrt 5}{2\sqrt 5}=1$ Compute $u_2$: $u_2=\dfrac{(1+\sqrt 5)^2-(1-\sqrt 5)^2}{2^2\sqrt 5}=\dfrac{1+2\sqrt 5+5-1+2\sqrt 5-5}{4\sqrt 5}$ $=\dfrac{4\sqrt 5}{4\sqrt 5}=1$ b) Compute $u_{n+1}+u_n$: $u_{n+1}+u_n=\dfrac{(1+\sqrt 5)^{n+1}-(1-\sqrt 5)^{n+1}}{2^{n+1}\sqrt 5}+\dfrac{(1+\sqrt 5)^n-(1-\sqrt 5)^n}{2^n\sqrt 5}$ $=\dfrac{(1+\sqrt 5)^n (1+\sqrt 5)-(1-\sqrt 5)^n(1-\sqrt 5)}{2\cdot 2^n\sqrt 5}+\dfrac{(1+\sqrt 5)^n-(1-\sqrt 5)^n}{2^n\sqrt 5}$ $=\dfrac{(1+\sqrt 5)^n (1+\sqrt 5)-(1-\sqrt 5)^n(1-\sqrt 5)+2(1+\sqrt 5)^n+2(1-\sqrt 5)^n}{2\cdot 2^n\sqrt 5}$ $=\dfrac{(1+\sqrt 5)^n}{2^n\sqrt 5}\left(\dfrac{1+\sqrt 5}{2}+1 \right)-\dfrac{(1-\sqrt 5)^n}{2^n\sqrt 5}\left(\dfrac{1-\sqrt 5}{2}+1 \right)$ $=\dfrac{(1+\sqrt 5)^n}{2^n\sqrt 5}\left(\dfrac{3+\sqrt 5}{2} \right)-\dfrac{(1-\sqrt 5)^n}{2^n\sqrt 5}\left(\dfrac{3-\sqrt 5}{2} \right)$ $u_{n+2}=\dfrac{(1+\sqrt 5)^{n+2}-(1-\sqrt 5)^{n+2}}{2^{n+2}\sqrt 5}$ $=\dfrac{(1+\sqrt 5)^n(1+\sqrt 5)^2-(1-\sqrt 5)^n(1-\sqrt 5)^2}{2^{n+2}\sqrt 5}$ $=\dfrac{(1+\sqrt 5)^n(6+2\sqrt 5)-(1-\sqrt 5)^n(6-2\sqrt 5)}{2^{n+2}\sqrt 5}$ $=\dfrac{(1+\sqrt 5)^n}{2^n\sqrt 5}\left(\dfrac{6+2\sqrt 5}{4} \right)-\dfrac{(1-\sqrt 5)^n}{2^n\sqrt 5}\left(\dfrac{6-2\sqrt 5}{4} \right)$ $=\dfrac{(1+\sqrt 5)^n}{2^n\sqrt 5}\left(\dfrac{3+\sqrt 5}{2} \right)-\dfrac{(1-\sqrt 5)^n}{2^n\sqrt 5}\left(\dfrac{3-\sqrt 5}{2} \right)$ We got that $u_{n+2}=u_{n+1}+u_n$ c) As each term of the sequence is the sum of the previous two terms, the sequence $\{u_n\}$ is a Fibonacci sequence.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.