Precalculus (10th Edition)

Published by Pearson
ISBN 10: 0-32197-907-9
ISBN 13: 978-0-32197-907-0

Chapter 11 - Systems of Equations and Inequalities - Chapter Review - Review Exercises - Page 794: 9

Answer

$\left\{\left(x,\dfrac{9x+33}{14},\dfrac{4x-39}{7},\right)|x\text{ is any real number}\right\}$

Work Step by Step

We are given the system of equations: $\begin{cases} 2x-4y+z=-15\\ x+2y-4z=27\\ 5x-6y-2z=-3 \end{cases}$ Use the elimination method. Multiply the first equation by 4 and add it to the second to eliminate $z$. Then multiply the first equation by 2 and add it to the third to eliminate $z$: $\begin{cases} x+2y-4z+4(2x-4y+z)=27+4(-15)\\ 5x-6y-2z+2(2x-4y+z)=-3+2(-15) \end{cases}$ $\begin{cases} x+2y-4z+8x-16y+4z=27-60\\ 5x-6y-2z+4x-8y+2z=-3-30 \end{cases}$ $\begin{cases} 9x-14y=-33\\ 9x-14y=-33 \end{cases}$ Multiply the first equation by -1 and add it to the second to eliminate $z$ and find $x$: $-(9x-14y)+9x-14y=-(-33)-33$ $-9x+14y+9x-14y=33-33$ $0=0$ We got an identity; therefore the system has infinitely many solutions. Determine $y$ in terms of $x$: $9x-14y=-33$ $14y=9x+33$ $y=\dfrac{9x+33}{14}$ Determine $z$ in terms of $x$: $x+2y-4z=27$ $x+2\cdot \dfrac{9x+33}{14}-4z=27$ $x+\dfrac{9x+33}{7}-4z=27$ $\dfrac{7x+9x+33}{7}-27=4z$ $z=\dfrac{16x+33-189}{28}$ $z=\dfrac{16x-156}{28}$ $z=\dfrac{4x-39}{7}$ The solution set is: $\left\{\left(x,\dfrac{9x+33}{14},\dfrac{4x-39}{7},\right)|x\text{ is any real number}\right\}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.