Answer
$108$
Work Step by Step
We know that for a matrix
\[
\left[\begin{array}{rrr}
a & b & c \\
d &e & f \\
g &h & i \\
\end{array} \right]
\]
the determinant, $D=a(ei-fh)-b(di-fg)+c(dh-eg).$
Hence here $D=1(2\cdot3-6\cdot1)-4((-1)\cdot3-6\cdot4)+0((-1)\cdot1-2\cdot4)=1(0)-4(-27)+0(-9)=0+107+0=108.$