Precalculus (10th Edition)

Published by Pearson
ISBN 10: 0-32197-907-9
ISBN 13: 978-0-32197-907-0

Chapter 11 - Systems of Equations and Inequalities - Chapter Review - Review Exercises - Page 794: 8

Answer

$\{(-1,2,-3)\}$

Work Step by Step

We are given the system of equations: $\begin{cases} x+2y-z=6\\ 2x-y+3z=-13\\ 3x-2y+3z=-16 \end{cases}$ Use the elimination method. Add the first equation to the third equation to eliminate $y$. Then multiply the second equation by 2 and add it to the first to eliminate $y$: $\begin{cases} x+2y-z+2(2x-y+3z)=6+2(-13)\\ 3x-2y+3z+x+2y-z=-16+6 \end{cases}$ $\begin{cases} x+2y-z+4x-2y+6z=6-26\\ 3x-2y+3z+x+2y-z=-16+6 \end{cases}$ $\begin{cases} 5x+5z=-20\\ 4x+2z=-10 \end{cases}$ $\begin{cases} x+z=-4\\ 2x+z=-5 \end{cases}$ Multiply the first equation by -1 and add it to the second to eliminate $z$ and find $x$: $-(x+z)+2x+z=-(-4)-5$ $-x-z+2x+z=4-5$ $x=-1$ Determine $z$: $x+z=-4$ $-1+z=-4$ $z=-3$ Determine $y$: $2x-y+3z=-13$ $2(-1)-y+3(-3)=-13$ $-11-y=-13$ $y=2$ The solution set is: $\{(-1,2,-3)\}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.