Precalculus (10th Edition)

Published by Pearson
ISBN 10: 0-32197-907-9
ISBN 13: 978-0-32197-907-0

Chapter 11 - Systems of Equations and Inequalities - 11.2 Systems of Linear Equations: Matrices - 11.2 Assess Your Understanding - Page 731: 55

Answer

Consistent Solution set: $\{(x,y,z)|x=5z-2,y=4z-3,z\text{ is any real number}\}$

Work Step by Step

We are given the system of equations: $\begin{cases} -x+y+z=-1\\ -x+2y-3z=-4\\ 3x-2y-7z=0 \end{cases}$ Write the augmented matrix: $\begin{bmatrix} -1&1&1&|&-1\\-1&2&-3&|&-4\\3&-2&-7&|&0\end{bmatrix}$ Perform row operations to bring the matrix to the reduced row echelon form: $R_1=-r_1$ $\begin{bmatrix} 1&-1&-1&|&1\\-1&2&-3&|&-4\\3&-2&-7&|&0\end{bmatrix}$ $R_2=r_1+r_2$ $\begin{bmatrix}1&-1&-1&|&1\\0&1&-4&|&-3\\3&-2&-7&|&0\end{bmatrix}$ $R_3=-3r_1+r_3$ $\begin{bmatrix}1&-1&-1&|&1\\0&1&-4&|&-3\\0&1&-4&|&-3\end{bmatrix}$ $R_3=-r_2+r_3$ $\begin{bmatrix}1&-1&-1&|&1\\0&1&-4&|&-3\\0&0&0&|&0\end{bmatrix}$ As the last row contains only zeros, the system is consistent, with infinitely many solutions. Write the corresponding system: $\begin{cases} x-y-z=1 y-4z=-3 \end{cases}$ Express $x,y$ in terms of $z$: $y-4z=-3\Rightarrow y=4z-3$ $x-y-z=1\Rightarrow x=4z-3+z+1=5z-2$ The solutions set is: $\{(x,y,z)|x=5z-2,y=4z-3,z\text{ is any real number}\}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.