Precalculus (10th Edition)

Published by Pearson
ISBN 10: 0-32197-907-9
ISBN 13: 978-0-32197-907-0

Chapter 11 - Systems of Equations and Inequalities - 11.2 Systems of Linear Equations: Matrices - 11.2 Assess Your Understanding - Page 731: 44

Answer

Consistent Solution set: $\left\{\left(x,y\right)|x=\frac{1}{3}y+\frac{7}{3},y\text{ is any real number}\right\}$

Work Step by Step

We are given the system of equations: $\begin{cases} 3x-y=7\\ 9x-3y=21 \end{cases}$ Write the augmented matrix: $\begin{bmatrix}3&-1&|&7\\9&-3&|&21\end{bmatrix}$ Perform row operations to bring the matrix to the reduced row echelon form: $R_1=\dfrac{1}{3}r_1$ $\begin{bmatrix}1&-\frac{1}{3}&|&\frac{7}{3}\\9&-3&|&21\end{bmatrix}$ $R_1=-9r_1+r_2$ $\begin{bmatrix}1&-\frac{1}{3}&|&\frac{7}{3}\\0&0&|&0\end{bmatrix}$ The last row only contains zeroes, so the system is consistent, having infinitely many solutions. Write the corresponding system of equations: $\begin{cases} x-\frac{1}{3}y=\frac{7}{3}\\ 0=0 \end{cases}$ Express $x$ in terms of $y$: $x-\frac{1}{3}y=\frac{7}{3}\Rightarrow x=\frac{1}{3}y+\frac{7}{3}$ The solution set is: $\left\{\left(x,y\right)|x=\frac{1}{3}y+\frac{7}{3},y\text{ is any real number}\right\}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.