Precalculus (10th Edition)

Published by Pearson
ISBN 10: 0-32197-907-9
ISBN 13: 978-0-32197-907-0

Chapter 11 - Systems of Equations and Inequalities - 11.2 Systems of Linear Equations: Matrices - 11.2 Assess Your Understanding - Page 731: 49

Answer

Consistent Solution set: $\left\{\left(8,2,0\right)\right\}$

Work Step by Step

We are given the system of equations: $\begin{cases} x-y=6\\ 2x-3z=16\\ 2y+z=4 \end{cases}$ Write the augmented matrix: $\begin{bmatrix} 1&-1&0&|&6\\2&0&-3&|&16\\0&2&1&|&4\end{bmatrix}$ Perform row operations to bring the matrix to the reduced row echelon form: $R_2=-2r_1+r_2$ $\begin{bmatrix} 1&-1&0&|&6\\0&2&-3&|&4\\0&2&1&|&4\end{bmatrix}$ $R_3=-r_2+r_3$ $\begin{bmatrix}1&-1&0&|&6\\0&2&-3&|&4\\0&0&4&|&0\end{bmatrix}$ $R_3=\dfrac{1}{4}r_3$ $\begin{bmatrix}1&-1&0&|&6\\0&2&-3&|&4\\0&0&1&|&0\end{bmatrix}$ $R_2=\dfrac{1}{2}r_2$ $\begin{bmatrix}1&-1&0&|&6\\0&1&-\frac{3}{2}&|&2\\0&0&1&|&0\end{bmatrix}$ $R_2=\dfrac{3}{2}r_3+r_2$ $\begin{bmatrix}1&-1&0&|&6\\0&1&0&|&2\\0&0&1&|&0\end{bmatrix}$ $R_1=-r_2+r_1$ $\begin{bmatrix}1&0&0&|&8\\0&1&0&|&2\\0&0&1&|&0\end{bmatrix}$ Write the corresponding system of equations: $\begin{cases} 1x+0y+0z=8\\ 0x+1y+0z=2\\ 0x+0y+1z=0 \end{cases}$ $\begin{cases} x=8\\ y=2\\ z=0 \end{cases}$ The system is consistent. The solution set is: $\left\{\left(8,2,0\right)\right\}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.