Precalculus (10th Edition)

Published by Pearson
ISBN 10: 0-32197-907-9
ISBN 13: 978-0-32197-907-0

Appendix A - Review - A.4 Synthetic Division - A.4 Assess Your Understanding - Page A34: 8

Answer

The quotient is $x^2+x-4$ and the remainder is $5$.

Work Step by Step

The given expression is:- $(x^3+2x^2-3x+1)\div (x+1)$ The divisor is $x+1$, so the value of $c=-1$. and on the right side the coefficients of dividend in descending powers of $x$. $\begin{matrix} &-- &-- &--&--& \\ -1) &1&2&-3&1& & \\ ​& &-1 &-1 &4 && \\ & -- & -- & --& -- && \\ & 1 & 1& -4 &5 & \\ ​\end{matrix}$ The Quotient is $x^2+x-4$ The remainder is $5$. Check:- $=\text{(Divisor)(Quotient)+Remainder}$ $=(x+1)(x^2+x-4)+5$ $=x^3+x^2-4x+x^2+x-4+5$ $=x^3+2x^2-3x+1$ Hence, the quotient is $x^2+x-4$ and the remainder is $5$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.