Precalculus (10th Edition)

Published by Pearson
ISBN 10: 0-32197-907-9
ISBN 13: 978-0-32197-907-0

Appendix A - Review - A.4 Synthetic Division - A.4 Assess Your Understanding - Page A34: 11

Answer

The quotient is $x^4-3x^3+5x^2-15x+46$ and the remainder is $-138$.

Work Step by Step

The given expression is:- $(x^5-4x^3+x)\div (x+3)$ Rewrite as descending powers of $x$. $(x^5+0x^4-4x^3+0x^2+x+0)\div (x+3)$ The divisor is $x+3$, so the value of $c=-3$. and on the right side the coefficients of dividend in descending powers of $x$. Perform syntehtic division to obtain: $\begin{matrix} &-- &-- &--&--& \\ -3) &1&0&-4&0&1 &0 \\ ​& &-3 &9 &-15 &45&-138 \\ & -- & -- & --& -- &--& -- \\ & 1 & -3 & 5 &-15 &46 &-138\\ ​\end{matrix}$ The divisor is $x+3$ The dividend is $x^5-4x^3+x$ The Quotient is $x^4-3x^3+5x^2-15x+46$ The remainder is $-138$. Check:- $=\text{(Divisor)(Quotient)+Remainder}$ $=(x+3)(x^4-3x^3+5x^2-15x+46)-138$ $=x^5-3x^4+5x^3-15x^2+46x+3x^4-9x^3+15x^2-45x+138-138$ $=x^5-4x^3+x$ Hence, the quotient is $x^4-3x^3+5x^2-15x+46$ and the remainder is $-138$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.