Precalculus (10th Edition)

Published by Pearson
ISBN 10: 0-32197-907-9
ISBN 13: 978-0-32197-907-0

Appendix A - Review - A.4 Synthetic Division - A.4 Assess Your Understanding - Page A34: 12

Answer

The quotient is $x^3+2x^2+5x+10$ and the remainder is $22$.

Work Step by Step

The given expression is:- $(x^4+x^2+2)\div (x-2)$ Rewrite as descending powers of $x$. $(x^4+0x^3+x^2+0x+2)\div (x-2)$ The divisor is $x-2$, so the value of $c=2$. and on the right side the coefficients of dividend in descending powers of $x$. Perform synthetic division to obtain: $\begin{matrix} &-- &-- &--&--& \\ 2) &1&0&1&0&2 \\ ​& &2 &4 &10 &20& \\ & -- & -- & --& -- &--& \\ & 1 & 2 & 5 &10 &22 &\\ ​\end{matrix}$ The divisor is $x-2$ The dividend is $x^4+x^2+2$ The Quotient is $x^3+2x^2+5x+10$ The remainder is $22$. Check:- $=\text{(Divisor)(Quotient)+Remainder}$ $=(x-2)(x^3+2x^2+5x+10)+22$ $=x^4+2x^3+5x^2+10x-2x^3-4x^2-10x-20+22$ $=x^4+x^2+2$ Hence, the quotient is $x^3+2x^2+5x+10$ and the remainder is $22$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.