Precalculus (10th Edition)

Published by Pearson
ISBN 10: 0-32197-907-9
ISBN 13: 978-0-32197-907-0

Appendix A - Review - A.4 Synthetic Division - A.4 Assess Your Understanding - Page A34: 7

Answer

The quotient is $x^2+x+4$ and the remainder is $12$.

Work Step by Step

The given expression is:- $(x^3-x^2+2x+4)\div (x-2)$ The divisor is $x-2$, so the value of $c=2$. and on the right side the coefficients of dividend in descending powers of $x$. $\begin{matrix} &-- &-- &--&--& \\ 2) &1&-1&2&4& & \\ ​& &2 &2 &8 && \\ & -- & -- & --& -- && \\ & 1 & 1& 4 &12 & \\ ​\end{matrix}$ The divisor is $x-2$ The dividend is $x^3-x^2+2x+4$ The remainder is $12$. The Quotient is $x^2+x+4$ Check:- $\text{(Divisor)(Quotient)+Remainder}$ $=(x-2)(x^2+x+4)+12$ $=x^3+x^2+4x-2x^2-2x-8+12$ $=x^3-x^2+2x+4$ Hence, the quotient is $x^2+x+4$ and the remainder is $12$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.